Замораживание и термостабилизация грунтов в криолитозоне
И.П. Рило (Lpolirorip@gmail.com)
К.А. Желудкова
Д.А. Клещин
В работе рассмотрено влияние внешних и внутренних устройств разрабатываемых модификаций новых термостабилизаторов на процессы теплопереноса в двухфазных системах с целью увеличения их эффективности. На основе полученных результатов исследовано влияние стратификации температуры в объеме и геометрии на характеристики теплопередачи. Установлено влияние применяемого хладагента (аммиака и углекислоты) и материала стенок внутреннего устройства на величину градиента и распределение температуры по длине термостабилизатора. Разработанная технология термостабилизации грунтов позволяет существенно увеличить интенсивность теплообменных процессов и значительно снизить температуры при глубинном замораживании грунтов до 100 м и более (минус 5,3 °C на глубине 50 м при температуре воздуха минус 17 °C для хладагента аммиака).
Проблема поддержания отрицательной температуры мерзлых пород для обеспечения надежности геотехнических систем в криолитозоне (шельфе), является актуальной для отраслей промышленности и жилищнокоммунального хозяйства. Одним из направлений решения проблемы являются использование работы гравитационных сил и криогенного ресурса на основе гладкостенных термостабилизаторов, разработки современных инженерных решений и технологии строительства на вечномерзлых грунтах.
Для современного строительства в северных условиях необходима унификация методов строительства и упрощение эксплуатации сооружений. Причем, при массовом строительстве предусматривают сохранение мерзлотногеологических условий и изменение этих условий. Такая задача разрешима, поскольку основные инженерные свойства грунтов определяются их температурой. НПО Фундаментстройаркос (ФСА) унифици- рует конструктивно-технологические решения северного строительства в значительной мере за счет усовершенствования способов и средств, обеспечивающих поддержание заданного температурного режима грунтов в основании сооружений, применяя термостабилизаторы (ТС) грунтов термосифонного типа нового поколения, в которых циркуляция аммиака и углекислоты осуществляется под действием силы тяжести и тепловой энергии грунта. При этом используется естественный холод низкие отрицательные температуры атмосферного воздуха в зимнее время с учетом скорости ветра, обдувающего оребрение конденсатора. Использование и применение разработанных средств и способов способствует сохранению и снижению естественной температуры вечномерзлых грунтов.
Каждый термосифон представляет собою циркуляционный контур, в котором движение хладагента обусловлено теплообменом в поле земного тяготения. Циркуляционный контур термосифона состоит из трех частей — испарителя, транзитного участка и конденсатора, в которых происходит теплообмен с внешней средой. Термостабилизаторы подразделяют на несколько типов. К первому, наиболее простому, относится термосифон испарительного типа, представляющий собой вертикальную трубу, в которой содержится насыщенный пар хладагента и жидкость (аммиак, углекислота). Верхний конец трубы со спиралевидно навитым под напряжением ленты оребрением из алюминия холоднее, поскольку охлаждается и обдувается зимой морозным воздухом. Нижний конец (испаритель) размещен в грунте с более высокой по сравнению с воздухом температурой. В результате возникает циркуляция хладагента: в верхней части трубы насыщенный пар конденсируется на внутренних стенках, пленка конденсата под действием силы тяжести стекает в нижнюю часть термосифона (испаритель), а пар за счет падения давления в зоне конденсации перемещается вверх по контуру циркуляции.
ТС удовлетворяют требованиям перспективности (по геометрическим, энергетическим, экономическим показателям, герметичности, жесткости, материалоемкости, транспортабельности и защищенности от вредных механических, химических и других воздействий) и энергосбережения. Применение ТС разных модификаций в качестве базовых элементов позволяет передавать потоки на значительные расстояния при малых температурных напорах (низких термических сопротивлениях). Широта температурного диапазона теплоно- сителей, практическая неограничен- ность разнообразных конструктивных форм и размеров определяют гиб- кость проектирования и технологии. Перспективные показатели в определенной степени «компенсируются» сложностью расчета, проектирования, технологии подготовки, изготовления, испытаний непосредственно ТС и сложностью теплового и гидравлического взаимодействия их с другими элементами (конденсаторным блоком, контуром циркуляции).
Разрабатываемые конструкции ТС различных типоразмеров и конфигураций, обладают уникальной совокупностью эксплуатационных свойств. Различные конструкции ТС разрабатываются с повышенным ресурсом работы не менее 30 лет. В процессе их производства используются алюминий АД-31 и трубы, в основном малого диаметра (33,7 мм), позволяющие конструировать протяженные теплообменные поверхности с определенной по техническому заданию максимальной тепловой мощностью (до 10—15 кВт). К используемым материалам и теплоносителям в ТС выдвигаются особые жесткие требования.
Для термостабилизации грунтов и в зависимости от заполняющего хладагента ТС используются в диапазоне от минус 60 °C до 0 °C. ТС надежны при эксплуатации при обеспечении требований совместимости материалов стенок корпуса и теплоносителей они могут функционировать неограниченно долго без существенного ухудшения своих теплофизических характеристик. В них отсутствуют движущиеся и трущиеся части. Это обеспечивает бесшумность, высокую надежность и длительный ресурс при работе в условиях изменений внутренних и внешних тепловых, а также механических воздействий. ТС обладают достаточной механической прочностью, относительно малой массой, автономностью. Благодаря механизму термосифона ТС во многих случаях не требуют дополнительной энергии для перекачки теплоносителей. Они отличаются высокой эффективной теплопроводностью и изотермичностью, работают в условиях гравитации. ТС позволяют рассеивать или концентрировать (трансформировать) тепловые потоки большой плотности, разделять и разветвлять в пространстве источники и стоки теплоты.
Широкое распространение на вечной мерзлоте получили глубинные трубчатые сезонно-охлаждающие устройства (СОУ) с подземной частью до 100 м и более: для замораживания и температурной стабилизации грунтов плотин и устьев скважин (рисунки 1, 2).
\
Рис 1. Плотина на р. Ирелях (г. Мирный). Одиночные СОУ производства ФСА
Рис 2. Образцы СОУ на испытательном полигоне термостабилизаторов ФСА: а - СОУ-50; б - СОУ-100
На рисунке 3 показана схема стенда модернизированного промышленного образца термостабилизатора СОУ-50 (термосифона), установленного на испытательном полигоне термостабилизаторов для исследования глубинного замораживания и термостабилизации грунтов на глубине до 50 м с расположением датчиков температуры t1 — t13 по высоте испарителя с регистрирующим вторичным прибором (13).
Рис.3. Принципиальная схема термостабилизатора СОУ-50
Суть модернизации заключается в организации раздельных потоков жидкой и паровой фаз хладагента в замкнутом пространстве термосифона 1, из которого предварительно удаляли воздух до глубокого вакуума и заполняли через вентиль 2 жидким аммиаком либо углекислым газом до уровня ниже уровня грунта примерно на 4 м. Под воздействием тепла грунта 3 хладагент испаряется в межкольцевом пространстве 4, образованном коаксиально установленными разного диаметра стальной 5 и внутренней полиэтиленовой 6 трубами. Образующаяся парожидкостная смесь хладагента в гравитационном поле по причине более низкой ее плотности по сравнению с плотностью жидкого хладагента, стекающего из конденсатора 7 (8 шт.) по внутренней трубе 6, устремляется вверх в конденсатор, проходя через интенсификатор, который состоит из специально сконструированной, разделяющей пространства испарителя и конденсатора доски 8 с установленными на ней патрубками 9 со сквозными проходящими отверстиями 10. В интенсификаторе происходит разделение парожидкостной смеси, содержащей капли жидкого хладагента. Основная стадия сепарации смеси происходит на границе между жидкой и паровой фазами в межкольцевом пространстве испарителя, чему способствует граница перехода, в узком смысле скачкообразное изменение физических свойств, при непрерывном изменении давления и температуры по высоте испарителя. Отсепарированный конденсат направляется вниз в испаритель по внутренней трубе вместе с жидким хладагентом, вытекающим из конденсатора. Стекающий во внутреннюю трубу конденсат через отверстия 11 попадает в межкольцевое пространство, где вновь происходит его испарение за счет подвода тепла грунта. Цикл замыкается. При циркуляции хладагента по контуру: межкольцевое пространство (испаритель) — интенсификатор — конденсатор — внутренняя труба (испаритель) — межкольцевое пространство (испаритель), происходит теплообмен между хладагентом (аммиаком) в межкольцевом пространстве и теплоносителем (30%-ым раствором хлористого кальция) в гильзе 12 через стенку испарителя.
В процессе работы испаритель заполнен хладагентом, при этом образуется жидкостной гидростатический гидрозатвор во внутренней трубе, который компенсирует потери давления при циркуляции хладагента по контуру, исключает встречное движение паровой и жидкой среды рабочего вещества, что благоприятно для гидродинамики потоков. Благодаря данному принципу работы устройство обладает такими достоинствами как возможность конструктивного исполнения с большой длиной зоны теплоотдачи (несколько десятков метров), высокая теплопередающая способность (до 10 кВт), возможность разнообразного конструктивного сполнения, в том числе в виде изогнутых, гибких либо сборных элементов.
В литературных источниках материал по исследованию пародинамических термосифонов отсутствует, а имеющиеся данные только частично описывают их работу. В [1] приводятся примеры применения пародинамических термосифонов в замораживающей технике грунтов. В [2] представлены расчеты по эффективности работы пародинамического термосифона. Достаточно информации по классическим термосифонам [3], но не определены параметры их работы.
Для термосифонов с организованными циркуляциями теплоносителя в гильзе и хладагента в термосифоне характерной особенностью системы является наличие свободноконвективного контура. Но в случае наличия внешних и внутренних устройств в термостабилизаторе, обуславливающих раздельные каналы для восходящего и нисходящего потоков хладагента, наблюдаются иные эффекты, проявляющиеся в характерном изменении температурного поля по глубине погружения испарителя в грунт. При этом большое значение имеют зазоры между теплообменными стенками в области испарителя. Известно, что процессы переноса в испарительном циркуляционном контуре зависят от конструктивного оформления контура, условий подвода теплоты и осложнены возникновением контурной неустойчивости при увеличении тепловых потоков [3].
Выводы
Опубликовано: Журнал "Трубопроводный транспорт [теория и практика]" № 4(50) 2015, 22с.